Acta Crystallographica Section C
Crystal Structure
Communications
ISSN 0108-2701

[2,6-Bis(isopropylthiomethyl)phenyl$\left.\kappa^{3} S, C^{1}, S^{\prime}\right]$ bromopalladium (II)

John Bacsa, ${ }^{\text {a }}$ Richard M. Moutloali ${ }^{\mathbf{b}}$ and James Darkwa ${ }^{\text {b }}$

${ }^{\text {a }}$ Department of Chemistry, University of Cape Town, Rondebosch 7700,
South Africa, and ${ }^{\mathbf{b}}$ Department of Chemistry, University of the Western Cape,
Private Bag X17, Belville 7535, South Africa
Correspondence e-mail: xrayjohn@psipsy.uct.ac.za

Received 30 October 2001
Accepted 23 November 2001
Online 23 January 2002

The title compound, $\left[\mathrm{PdBr}\left(\mathrm{C}_{14} \mathrm{H}_{21} \mathrm{~S}_{2}\right)\right]$ or $\left[\mathrm{PdBr}\left\{\mathrm{C}_{6} \mathrm{H}_{3^{-}}\right.\right.$ $\left.\left.\left(\mathrm{CH}_{2} \mathrm{~S}^{i} \mathrm{Pr}\right)_{2}-2,6\right\}\right]$, exhibits square-planar geometry at the Pd centre, with three atoms of the square plane provided by the rigid thiopincer ligand, i.e. 1,3-bis(thiomethyl)benzene.

Comment

Thiopincer ligand complexes are formed by the cyclometallation of 1,3-bis(disubstituted thiomethyl)benzene. The compounds $\left[\mathrm{PdCl}\left\{\mathrm{C}_{6} \mathrm{H}_{3}\left(\mathrm{CH}_{2} \mathrm{~S}^{t} \mathrm{Bu}\right)_{2}-2,6\right\}\right]$ (Errington et al., 1980), and $\left[\mathrm{PdCl}\left\{\mathrm{C}_{6} \mathrm{H}_{3}\left(\mathrm{CH}_{2} \mathrm{SCH}_{2} \mathrm{CH}_{3}\right)_{2}-2,6\right\}\right]$ and $\left[\mathrm{PdCl}\left\{\mathrm{C}_{6} \mathrm{H}_{3}-\right.\right.$ $\left.\left.\left(\mathrm{CH}_{2} \mathrm{SC}_{6} \mathrm{H}_{5}\right)_{2}-2,6\right\}\right]$ (Lucena et al., 1996) have been prepared by this method. These complexes have been used as catalysts for various reactions, such as the catalytic dehydrogenation of alkanes (Gupta et al., 1996, 1997; Liu et al., 1999), and ethers and alkylarenes (Dijkstra et al., 2001; Gorla et al., 1994; Langmire et al., 1998; Stark et al., 2000), and as Lewis acid catalysts (Dijkstra et al., 2001). They are also used as catalysts for aldol reactions between benzaldehydes and methyl isocyanoacetate (Espinet et al., 1994), as hydrogen transfer catalysts (Dani et al., 2000) and as SO_{2} reversible binding sites in gas sensor materials (Albrecht \& van Koten, 1999; Albrecht et al., 2000).

(I)

Recently, we have used pincer ligand complexes as starting materials for potential metallomesogens by reacting $\left[\mathrm{PdBr}\left\{\mathrm{C}_{6} \mathrm{H}_{3}\left(\mathrm{CH}_{2} \mathrm{~S}^{i} \mathrm{Pr}\right)_{2}-2,6\right\}\right]$ with long-chain alkoxy-arylthiols in the presence of $\mathrm{Et}_{3} \mathrm{~N}$. This is a methodology employed in preparing a number of metal-thiolate complexes (Darkwa \& Milius, 1996; Darkwa et al., 1998; Nevondo et al., 2000;

Figure 1
A view of the molecule of (I) with the atomic numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii.

Moutloali et al., 2001). However, in an attempt to react [$\left.\mathrm{PdBr}\left\{\mathrm{C}_{6} \mathrm{H}_{3}\left(\mathrm{CH}_{2} \mathrm{~S}^{i} \mathrm{Pr}\right)_{2}-2,6\right\}\right]$, (I), with thiols, compound (I) crystallized from the reaction mixture instead of forming a palladium-thiolate complex. This indicates that $\mathrm{Et}_{3} \mathrm{~N}$ might be too weak a base to effect the desired reaction. The structure of the title palladium complex, (I), is reported here.

The molecular structure of (I) is shown in Fig. 1 and selected bond distances and angles are given in Table 1. The coordination number of the Pd atom in (I) is four and the donor atoms are arranged in a square plane, with the S atoms trans to each other. The two $\mathrm{Pd}-\mathrm{S}$ distances differ only slightly. This is in contrast with similar compounds in which the S atoms are cis to each other. In these compounds, the $\mathrm{Pd}-\mathrm{S}$ distances differ significantly. For example, the two $\mathrm{Pd}-\mathrm{S}$ distances $[2.274(2)$ and $2.256(2) \AA]$ in $\left[P d\left(\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{~S}_{3}\right) \mathrm{Br}_{2}\right]$ (Wieghart et al., 1986) are noticeably different.

In compound (I), the 1,3-bis(thiomethyl)benzene unit behaves as a tridentate ligand. Its two S atoms are separated by a distance of 4.587 (8) \AA and are therefore suitably disposed to form two $\mathrm{Pd}-\mathrm{S}$ bonds orientated trans to each other. The two isopropyl substituents are in axial positions on the same side of the molecular plane, whereas the tert-butyl groups are on opposite sides in $\left[\mathrm{PdCl}\left(\mathrm{C}_{6} \mathrm{H}_{4}\right)\left(\mathrm{CH}_{2} \mathrm{~S}^{i} \mathrm{Pr}\right)_{2}\right]$ (Errington et. al., 1980). The axial conformation is preferred, as the isopropyl repulsions are minimized. Potential repulsion between the two isopropyl substituents is also minimized when they are on opposite sides. However, in contrast with the tertbutyl analogue, the two isopropyl groups in (I) are cis to each other. In this conformation, the shortest distance between H atoms is 2.315 (7) \AA.

Experimental

Palladium acetate ($0.5 \mathrm{~g}, 2.23 \mathrm{mmol}$) was dissolved in glacial acetic acid (40 ml) and then charged with compound (I) $(0.71 \mathrm{ml}$, 2.23 mmol), and the mixture was refluxed for 30 min . To this was added $\mathrm{LiBr}(0.5 \mathrm{~g}, 12.2 \mathrm{mmol})$ and the reaction was stirred at room

Table 1
Selected geometric parameters ($\AA \mathrm{A}^{\circ}$).

$\mathrm{Pd}-\mathrm{C} 1$	$1.984(2)$	$\mathrm{Pd}-\mathrm{S} 2$	$2.3110(6)$
$\mathrm{Pd}-\mathrm{S} 1$	$2.2924(6)$	$\mathrm{Pd}-\mathrm{Br}$	$2.5471(3)$
$\mathrm{C} 1-\mathrm{Pd}-\mathrm{S} 1$	$85.08(7)$	$\mathrm{C} 1-\mathrm{Pd}-\mathrm{Br}$	$178.91(7)$
$\mathrm{C} 1-\mathrm{Pd}-\mathrm{S} 2$	$85.17(7)$	$\mathrm{S} 1-\mathrm{Pd}-\mathrm{Br}$	$94.549(17)$
$\mathrm{S} 1-\mathrm{Pd}-\mathrm{S} 2$	$170.19(2)$	$\mathrm{S} 2-\mathrm{Pd}-\mathrm{Br}$	$95.180(16)$

temperature for 1 h . The solvent was removed and the residue extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and passed through silica gel (7 cm), which was washed with a copious amount of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The solvent was removed in vacuo from the combined $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ washings to leave an orange residue, which was recrystallized from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-hexane (1:1 $v / v)$ at 123 K to give an orange-yellow solid, (I) $(0.83 \mathrm{~g}, 94 \%)$. Analysis calculated for $\left[\operatorname{PdBr}\left\{\mathrm{C}_{6} \mathrm{H}_{3}\left(\mathrm{CH}_{2} \mathrm{~S}^{i} \operatorname{Pr}\right)_{2}-2,6\right\}\right]:$ C $38.23, \mathrm{H}$ 4.81%; found: $\mathrm{C} 38.5, \mathrm{H} 4.6 \% .{ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, \delta$, p.p.m.): 6.97 (s, $\left.3 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{3}\right), 4.20\left(s, 4 \mathrm{H}, \mathrm{CH}_{2}\right), 3.64\left(q, 2 \mathrm{H}, J_{\mathrm{HH}}=6.8 \mathrm{~Hz},{ }^{i} \mathrm{Pr}\right), 1.58(d$, $\left.12 \mathrm{H}, J_{\mathrm{HH}}=6.8 \mathrm{~Hz},{ }^{i} \mathrm{Pr}\right)$.

Crystal data

$\left[\mathrm{PdBr}\left(\mathrm{C}_{14} \mathrm{H}_{21} \mathrm{~S}_{2}\right)\right]$
$M_{r}=439.77$
Monoclinic, $P 2_{1} / c$
$a=8.5591$ (2) \AA 。
$b=10.6777$ (2) \AA
$c=17.6816$ (4) \AA
$\beta=103.042(1)^{\circ}$
$V=1574.3$ (1) \AA^{3}
$Z=4$

Data collection

Nonius KappaCCD area-detector diffractometer

φ and ω scans with θ offsets
Absorption correction: empirical
(SCALEPACK; Otwinowski \& Minor, 1997)
$T_{\text {min }}=0.350, T_{\text {max }}=0.490$
14692 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.024$
$w R\left(F^{2}\right)=0.052$
$S=1.08$
3557 reflections
168 parameters
H -atom parameters constrained
$D_{x}=1.855 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 3396
reflections
$\theta=2.2-27.5^{\circ}$
$\mu=3.96 \mathrm{~mm}^{-1}$
$T=173$ (2) K
Rectangular block, light yellow
$0.30 \times 0.26 \times 0.18 \mathrm{~mm}$

3557 independent reflections
3143 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.023$
$\theta_{\text {max }}=27.5^{\circ}$
$h=-11 \rightarrow 11$
$k=-13 \rightarrow 13$
$l=-22 \rightarrow 22$
$w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0158 P)^{2}\right.$
$+1.0617 P]$
where $P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }=0.001$
$\Delta \rho_{\max }=1.07 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\min }=-0.60 \mathrm{e}^{-3}$
Extinction correction: SHELXL97
(Sheldrick, 1997)
Extinction coefficient: 0.00217 (17)

Although all H atoms could be located in the difference Fourier map, they were placed in idealized positions and refined as riding
atoms, with $\mathrm{C}-\mathrm{H}=0.95-1.00 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.2$ or 1.5 times $U_{\text {eq }}(\mathrm{C})$.

Data collection: COLLECT (Nonius, 2001); cell refinement: SCALEPACK (Otwinowski \& Minor, 1997); data reduction: SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: PLATON (Spek, 1997).

Supplementary data for this paper are available from the IUCr electronic archives (Reference: TA1357). Services for accessing these data are described at the back of the journal.

References

Albrecht, M., Gossage, R. A., Lutz, M., Spek, A. L. \& van Koten, G. (2000). Chem. Eur. J. 6, 1-15.
Albrecht, M. \& van Koten, G. (1999). Adv. Mater. 11, 171-174.
Dani, P., Karlen, T., Gossage, R. A. \& van Koten, G. (2000). Angew. Chem. Int. Ed. 39, 743-745.
Darkwa, J. \& Milius, W. (1996). Acta Cryst. C52, 2159-2161.
Darkwa, J., Moutloali, R. M. \& Nyokong, T. (1998). J. Organomet. Chem. 564, 37-45.
Dijkstra, H. P., Meijer, M., Patel, J., Kreiter, R., van Klink, G. P. M., Lutz, M., Spek, A. L., Canty, A. J. \& van Koten, G. (2001). Organometallics, 20, 31593168.

Errington, J., McDonald, W. S. \& Shaw, B. L. (1980). J. Chem. Soc. Dalton Trans. pp. 2312-2314.
Espinet, P., Lorenzo, C. \& Minguel, J. A. (1994). Inorg. Chem. 33, 2052-2055.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Gorla, F., Togni, A., Venanzi, L. M., Albinati, A. \& Lianza, F. (1994). Organometallics, 13, 1607-1616.
Gupta, M., Hagen, C., Flesher, R. J., Kaska, W. C. \& Jensen, C. M. (1996). J. Chem. Soc. Chem. Commun. pp. 2083-2084.
Gupta, M., Hagen, C., Kaska, W. C., Cramer, R. E. \& Jensen, C. M. (1997). J. Am. Chem. Soc. 119, 840-841.
Langmire, J. M., Zhang, X. \& Shang, M. (1998). Organometallics, 17, 43744379.

Liu, F., Pak, E. B., Singh, B., Jensen, C. M. \& Goldman, A. S. (1999). J. Am. Chem. Soc. 121, 4086-4087.
Lucena, N., Casabo, J., Escriche, L., Sanchez-Castello, G., Teixido, F., Kivekas, R. \& Sillanpaa, R. (1996). Polyhedron, 15, 3009-3018.

Moutloali, R. M., Bacsa, J., Ddamba, W. A. \& Darkwa, J. (2001). J. Organomet. Chem. 629, 171-181.
Nevondo, F. A., Crouch, A. M. \& Darkwa, J. (2000). J. Chem. Soc. Dalton Trans. pp. 43-50.
Nonius (2001). COLLECT. Nonius BV, Delft, The Netherlands.
Otwinowski, Z. \& Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter \& R. M. Sweet, pp. 307-326. London: Academic Press.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Spek, A. L. (1997). PLATON. University of Utrecht, The Netherlands.
Stark, M. A., Jones, G. \& Richards, C. J. (2000). Organometallics, 19, 12821291.

Wieghart, K., Kuppers, H., Raabe, E. \& Kruger, C. (1986). Angew. Chem. Int. Ed. Engl. 25, 1101-1103.

